Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(5): e0250579, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34043658

RESUMO

In mammals, the pigment molecule pheomelanin confers red and yellow color to hair, and the intensity of this coloration is caused by variation in the amount of pheomelanin. Domestic dogs exhibit a wide range of pheomelanin intensity, ranging from the white coat of the Samoyed to the deep red coat of the Irish Setter. While several genetic variants have been associated with specific coat intensity phenotypes in certain dog breeds, they do not explain the majority of phenotypic variation across breeds. In order to gain further insight into the extent of multigenicity and epistatic interactions underlying coat pheomelanin intensity in dogs, we leveraged a large dataset obtained via a direct-to-consumer canine genetic testing service. This consisted of genome-wide single nucleotide polymorphism (SNP) genotype data and owner-provided photos for 3,057 pheomelanic mixed breed and purebred dogs from 63 breeds and varieties spanning the full range of canine coat pheomelanin intensity. We first performed a genome-wide association study (GWAS) on 2,149 of these dogs to search for additional genetic variants that underlie intensity variation. GWAS identified five loci significantly associated with intensity, of which two (CFA15 29.8 Mb and CFA20 55.8 Mb) replicate previous findings and three (CFA2 74.7 Mb, CFA18 12.9 Mb, CFA21 10.9 Mb) have not previously been reported. In order to assess the combined predictive power of these loci across dog breeds, we used our GWAS data set to fit a linear model, which explained over 70% of variation in coat pheomelanin intensity in an independent validation dataset of 908 dogs. These results introduce three novel pheomelanin intensity loci, and further demonstrate the multigenic nature of coat pheomelanin intensity determination in domestic dogs.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Genótipo , Cor de Cabelo/genética , Melaninas/genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Alelos , Animais , Cães , Cor de Cabelo/fisiologia , Melaninas/metabolismo , Especificidade da Espécie
2.
PLoS One ; 16(3): e0248233, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33755696

RESUMO

Structural variations (SVs) represent a large fraction of all genetic diversity, but how this genetic diversity is translated into phenotypic and organismal diversity is unclear. Explosive diversification of dog coat color and patterns after domestication can provide a unique opportunity to explore this question; however, the major obstacle is to efficiently collect a sufficient number of individuals with known phenotypes and genotypes of hundreds of thousands of markers. Using customer-provided information about coat color and patterns of dogs tested on a commercial canine genotyping platform, we identified a genomic region on chromosome 38 that is strongly associated with a mottled coat pattern (roaning) by genome-wide association study. We identified a putative causal variant in this region, an 11-kb tandem duplication (11,131,835-11,143,237) characterized by sequence read coverage and discordant reads of whole-genome sequence data, microarray probe intensity data, and a duplication-specific PCR assay. The tandem duplication is in an intronic region of usherin gene (USH2A), which was perfectly associated with roaning but absent in non-roaned dogs. We detected strong selection signals in this region characterized by reduced nucleotide diversity (π), increased runs of homozygosity, and extended haplotype homozygosity in Wirehaired Pointing Griffons and Australian Cattle Dogs (typically roaned breeds), as well as elevated genetic difference (FST) between Wirehaired Pointing Griffon (roaned) and Labrador Retriever (non-roaned). Surprisingly, all Dalmatians (N = 262) carried the duplication embedded in identical or similar haplotypes with roaned dogs, indicating this region as a shared target of selection during the breed's formation. We propose that the Dalmatian's unique spots were a derived coat pattern by establishing a novel epistatic interaction between roaning "R-locus" on chromosome 38 and an uncharacterized modifier locus. These results highlight the utility of consumer-oriented genotype and phenotype data in the discovery of genomic regions contributing to phenotypic diversity in dogs.


Assuntos
Pelo Animal/metabolismo , Cães/genética , Proteínas da Matriz Extracelular/genética , Animais , Cães/metabolismo , Epistasia Genética , Duplicação Gênica , Loci Gênicos , Cor de Cabelo , Íntrons , Fenótipo
3.
Evol Appl ; 13(10): 2555-2565, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33294008

RESUMO

In many ways, dogs are an ideal model for the study of genetic erosion and population recovery, problems of major concern in the field of conservation genetics. Genetic diversity in many dog breeds has been declining systematically since the beginning of the 1800s, when modern breeding practices came into fashion. As such, inbreeding in domestic dog breeds is substantial and widespread and has led to an increase in recessive deleterious mutations of high effect as well as general inbreeding depression. Pedigrees can in theory be used to guide breeding decisions, though are often incomplete and do not reflect the full history of inbreeding. Small microsatellite panels are also used in some cases to choose mating pairs to produce litters with low levels of inbreeding. However, the long-term impact of such practices has not been thoroughly evaluated. Here, we use forward simulation on a model of the dog genome to examine the impact of using limited marker panels to guide pairwise mating decisions on genome-wide population-level genetic diversity. Our results suggest that in unmanaged populations, where breeding decisions are made at the pairwise-rather than population-level, such panels can lead to accelerated loss of genetic diversity at genome regions unlinked to panel markers, compared to random mating. These results demonstrate the importance of genome-wide genetic panels for managing and conserving genetic diversity in dogs and other companion animals.

4.
Mamm Genome ; 30(5-6): 166-172, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31115595

RESUMO

Inbreeding depression has been demonstrated to impact vital rates, productivity, and performance in human populations, wild and endangered species, and in recent years, the domestic species. In all cases, standardized, high-quality phenotype data on all individuals are invaluable for longitudinal analyses such as those required to evaluate vital rates of a study cohort. Further, many investigators agree upon the preference for and utility of genomic measures of inbreeding in lieu of pedigree-based estimates of inbreeding. We evaluated the association of measures of reproductive fitness in 93 Golden Retrievers enrolled in the Golden Retriever Lifetime Study with a genomic measurement of inbreeding, FROH. We demonstrate a statistically significant negative correlation between fecundity and FROH. This work sets the stage for larger scale analyses to investigate genomic regions associated with fecundity and other measures of fitness.


Assuntos
Fertilidade/fisiologia , Depressão por Endogamia , Animais , Cães/genética , Cães/fisiologia , Feminino , Fertilidade/genética , Genoma/genética , Genótipo , Homozigoto , Depressão por Endogamia/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
5.
G3 (Bethesda) ; 9(1): 117-123, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30429214

RESUMO

Inbreeding leaves distinct genomic traces, most notably long genomic tracts that are identical by descent and completely homozygous. These runs of homozygosity (ROH) can contribute to inbreeding depression if they contain deleterious variants that are fully or partially recessive. Several lines of evidence have been used to show that long (> 5 megabase) ROH are disproportionately likely to harbor deleterious variation, but the extent to which long vs. short tracts contribute to autozygosity at loci known to be deleterious and recessive has not been studied. In domestic dogs, nearly 200 mutations are known to cause recessive diseases, most of which can be efficiently assayed using SNP arrays. By examining genome-wide data from over 200,000 markers, including 150 recessive disease variants, we built high-resolution ROH density maps for nearly 2,500 dogs, recording ROH down to 500 kilobases. We observed over 678 homozygous deleterious recessive genotypes in the panel across 29 loci, 90% of which overlapped with ROH inferred by GERMLINE. Although most of these genotypes were contained in ROH over 5 Mb in length, 14% were contained in short (0.5 - 2.5 megabase) tracts, a significant enrichment compared to the genetic background, suggesting that even short tracts are useful for computing inbreeding metrics like the coefficient of inbreeding estimated from ROH (FROH ). In our dataset, FROH differed significantly both within and among dog breeds. All breeds harbored some regions of reduced genetic diversity due to drift or selective sweeps, but the degree of inbreeding and the proportion of inbreeding caused by short vs. long tracts differed between breeds, reflecting their different population histories. Although only available for a few species, large genome-wide datasets including recessive disease variants hold particular promise not only for disentangling the genetic architecture of inbreeding depression, but also evaluating and improving upon current approaches for detecting ROH.


Assuntos
Doenças do Cão/genética , Genética Populacional , Mutação em Linhagem Germinativa/genética , Endogamia , Animais , Cruzamento , Cães , Genoma/genética , Genômica , Genótipo , Homozigoto , Polimorfismo de Nucleotídeo Único/genética
6.
PLoS Genet ; 14(10): e1007648, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30286082

RESUMO

Consumer genomics enables genetic discovery on an unprecedented scale by linking very large databases of personal genomic data with phenotype information voluntarily submitted via web-based surveys. These databases are having a transformative effect on human genomics research, yielding insights on increasingly complex traits, behaviors, and disease by including many thousands of individuals in genome-wide association studies (GWAS). The promise of consumer genomic data is not limited to human research, however. Genomic tools for dogs are readily available, with hundreds of causal Mendelian variants already characterized, because selection and breeding have led to dramatic phenotypic diversity underlain by a simple genetic structure. Here, we report the results of the first consumer genomics study ever conducted in a non-human model: a GWAS of blue eyes based on more than 3,000 customer dogs with validation panels including nearly 3,000 more, the largest canine GWAS to date. We discovered a novel association with blue eyes on chromosome 18 (P = 1.3x10-68) and used both sequence coverage and microarray probe intensity data to identify the putative causal variant: a 98.6-kb duplication directly upstream of the Homeobox gene ALX4, which plays an important role in mammalian eye development. This duplication is largely restricted to Siberian Huskies, is strongly associated with the blue-eyed phenotype (chi-square P = 5.2x10-290), and is highly, but not completely, penetrant. These results underscore the power of consumer-data-driven discovery in non-human species, especially dogs, where there is intense owner interest in the personal genomic information of their pets, a high level of engagement with web-based surveys, and an underlying genetic architecture ideal for mapping studies.


Assuntos
Cães/genética , Cor de Olho/genética , Doenças da Íris/genética , Transtornos da Pigmentação/genética , Animais , Duplicação Cromossômica/genética , DNA , Triagem e Testes Direto ao Consumidor , Genoma , Estudo de Associação Genômica Ampla , Genômica/métodos , Genótipo , Fenótipo , Análise de Sequência de DNA
7.
Genome Biol ; 17(1): 246, 2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27899133

RESUMO

BACKGROUND: The 2'-5' oligoadenylate synthetase (OAS) locus encodes for three OAS enzymes (OAS1-3) involved in innate immune response. This region harbors high amounts of Neandertal ancestry in non-African populations; yet, strong evidence of positive selection in the OAS region is still lacking. RESULTS: Here we used a broad array of selection tests in concert with neutral coalescent simulations to demonstrate a signal of adaptive introgression at the OAS locus. Furthermore, we characterized the functional consequences of the Neandertal haplotype in the transcriptional regulation of OAS genes at baseline and infected conditions. We found that cells from people with the Neandertal-like haplotype express lower levels of OAS3 upon infection, as well as distinct isoforms of OAS1 and OAS2. CONCLUSIONS: We present evidence that a Neandertal haplotype at the OAS locus was subjected to positive selection in the human population. This haplotype is significantly associated with functional consequences at the level of transcriptional regulation of innate immune responses. Notably, we suggest that the Neandertal-introgressed haplotype likely reintroduced an ancestral splice variant of OAS1 encoding a more active protein, suggesting that adaptive introgression occurred as a means to resurrect adaptive variation that had been lost outside Africa.


Assuntos
2',5'-Oligoadenilato Sintetase/genética , Imunidade Inata/genética , Infecções/genética , Animais , Evolução Molecular , Regulação Enzimológica da Expressão Gênica , Genoma Humano , Haplótipos/genética , Humanos , Infecções/imunologia , Infecções/patologia , Homem de Neandertal/genética , Homem de Neandertal/imunologia , Polimorfismo de Nucleotídeo Único , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , Seleção Genética/genética , Seleção Genética/imunologia
8.
Cell ; 167(3): 657-669.e21, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27768889

RESUMO

Individuals from different populations vary considerably in their susceptibility to immune-related diseases. To understand how genetic variation and natural selection contribute to these differences, we tested for the effects of African versus European ancestry on the transcriptional response of primary macrophages to live bacterial pathogens. A total of 9.3% of macrophage-expressed genes show ancestry-associated differences in the gene regulatory response to infection, and African ancestry specifically predicts a stronger inflammatory response and reduced intracellular bacterial growth. A large proportion of these differences are under genetic control: for 804 genes, more than 75% of ancestry effects on the immune response can be explained by a single cis- or trans-acting expression quantitative trait locus (eQTL). Finally, we show that genetic effects on the immune response are strongly enriched for recent, population-specific signatures of adaptation. Together, our results demonstrate how historical selective events continue to shape human phenotypic diversity today, including for traits that are key to controlling infection.

9.
Genome Res ; 26(5): 579-87, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27056836

RESUMO

The gradual accumulation of mutations by any of a number of mutational processes is a major driving force of divergence and evolution. Here, we investigate a potentially novel mutational process that is based on the activity of members of the AID/APOBEC family of deaminases. This gene family has been recently shown to introduce-in multiple types of cancer-enzyme-induced clusters of co-occurring somatic mutations caused by cytosine deamination. Going beyond somatic mutations, we hypothesized that APOBEC3-following its rapid expansion in primates-can introduce unique germline mutation clusters that can play a role in primate evolution. In this study, we tested this hypothesis by performing a comprehensive comparative genomic screen for APOBEC3-induced mutagenesis patterns across different hominids. We detected thousands of mutation clusters introduced along primate evolution which exhibit features that strongly fit the known patterns of APOBEC3G mutagenesis. These results suggest that APOBEC3G-induced mutations have contributed to the evolution of all genomes we studied. This is the first indication of site-directed, enzyme-induced genome evolution, which played a role in the evolution of both modern and archaic humans. This novel mutational mechanism exhibits several unique features, such as its higher tendency to mutate transcribed regions and regulatory elements and its ability to generate clusters of concurrent point mutations that all occur in a single generation. Our discovery demonstrates the exaptation of an anti-viral mechanism as a new source of genomic variation in hominids with a strong potential for functional consequences.


Assuntos
Desaminase APOBEC-3G/genética , Evolução Molecular , Hominidae/genética , Mutação , Animais , Humanos
10.
J Hum Evol ; 79: 55-63, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25563409

RESUMO

Nuclear genome sequence data from Neandertals, Denisovans, and archaic anatomically modern humans can be used to complement our understanding of hominin evolutionary biology and ecology through i) direct inference of archaic hominin phenotypes, ii) indirect inference of those phenotypes by identifying the effects of previously-introgressed alleles still present among modern humans, or iii) determining the evolutionary timing of relevant hominin-specific genetic changes. Here we review and reanalyze published Neandertal and Denisovan genome sequence data to illustrate an example of the third approach. Specifically, we infer the timing of five human gene presence/absence changes that may be related to particular hominin-specific dietary changes and discuss these results in the context of our broader reconstructions of hominin evolutionary ecology. We show that pseudogenizing (gene loss) mutations in the TAS2R62 and TAS2R64 bitter taste receptor genes and the MYH16 masticatory myosin gene occurred after the hominin-chimpanzee divergence but before the divergence of the human and Neandertal/Denisovan lineages. The absence of a functional MYH16 protein may explain our relatively reduced jaw muscles; this gene loss may have followed the adoption of cooking behavior. In contrast, salivary amylase gene (AMY1) duplications were not observed in the Neandertal and Denisovan genomes, suggesting a relatively recent origin for the AMY1 copy number gains that are observed in modern humans. Thus, if earlier hominins were consuming large quantities of starch-rich underground storage organs, as previously hypothesized, then they were likely doing so without the digestive benefits of increased salivary amylase production. Our most surprising result was the observation of a heterozygous mutation in the first codon of the TAS2R38 bitter taste receptor gene in the Neandertal individual, which likely would have resulted in a non-functional protein and inter-individual PTC (phenylthiocarbamide) taste sensitivity variation, as also observed in both humans and chimpanzees.


Assuntos
Evolução Biológica , Comportamento Alimentar/fisiologia , Hominidae/genética , Hominidae/fisiologia , Animais , Sequência de Bases , DNA/análise , DNA/genética , Variações do Número de Cópias de DNA , Fósseis , Variação Genética , Genômica , Humanos , Dados de Sequência Molecular , Cadeias Pesadas de Miosina/genética , Homem de Neandertal , Paleontologia , Fenótipo , Receptores Acoplados a Proteínas G/genética , Alinhamento de Sequência , Análise de Sequência de DNA
11.
J Hum Evol ; 79: 64-72, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25467111

RESUMO

The age of polymorphic alleles in humans is often estimated from population genetic patterns in extant human populations, such as allele frequencies, linkage disequilibrium, and rate of mutations. Ancient DNA can improve the accuracy of such estimates, as well as facilitate testing the validity of demographic models underlying many population genetic methods. Specifically, the presence of an allele in a genome derived from an ancient sample testifies that the allele is at least as old as that sample. In this study, we consider a common method for estimating allele age based on allele frequency as applied to variants from the US National Institutes of Health (NIH) Heart, Lung, and Blood Institute (NHLBI) Exome Sequencing Project. We view these estimates in the context of the presence or absence of each allele in the genomes of the 5300 year old Tyrolean Iceman, Ötzi, and of the 50,000 year old Altai Neandertal. Our results illuminate the accuracy of these estimates and their sensitivity to demographic events that were not included in the model underlying age estimation. Specifically, allele presence in the Iceman genome provides a good fit of allele age estimates to the expectation based on the age of that specimen. The equivalent based on the Neandertal genome leads to a poorer fit. This is likely due in part to the older age of the Neandertal and the older time of the split between modern humans and Neandertals, but also due to gene flow from Neandertals to modern humans not being considered in the underlying demographic model. Thus, the incorporation of ancient DNA can improve allele age estimation, demographic modeling, and tests of natural selection. Our results also point to the importance of considering a more diverse set of ancient samples for understanding the geographic and temporal range of individual alleles.


Assuntos
DNA/genética , Evolução Molecular , Genética Populacional/métodos , Homem de Neandertal/genética , Animais , Antropologia Física , DNA/análise , Europa (Continente) , Humanos , Masculino , Seleção Genética
12.
PLoS One ; 9(12): e113684, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25479423

RESUMO

Many complex human diseases are highly sexually dimorphic, suggesting a potential contribution of the X chromosome to disease risk. However, the X chromosome has been neglected or incorrectly analyzed in most genome-wide association studies (GWAS). We present tailored analytical methods and software that facilitate X-wide association studies (XWAS), which we further applied to reanalyze data from 16 GWAS of different autoimmune and related diseases (AID). We associated several X-linked genes with disease risk, among which (1) ARHGEF6 is associated with Crohn's disease and replicated in a study of ulcerative colitis, another inflammatory bowel disease (IBD). Indeed, ARHGEF6 interacts with a gastric bacterium that has been implicated in IBD. (2) CENPI is associated with three different AID, which is compelling in light of known associations with AID of autosomal genes encoding centromere proteins, as well as established autosomal evidence of pleiotropy between autoimmune diseases. (3) We replicated a previous association of FOXP3, a transcription factor that regulates T-cell development and function, with vitiligo; and (4) we discovered that C1GALT1C1 exhibits sex-specific effect on disease risk in both IBDs. These and other X-linked genes that we associated with AID tend to be highly expressed in tissues related to immune response, participate in major immune pathways, and display differential gene expression between males and females. Combined, the results demonstrate the importance of the X chromosome in autoimmunity, reveal the potential of extensive XWAS, even based on existing data, and provide the tools and incentive to properly include the X chromosome in future studies.


Assuntos
Cromossomos Humanos X/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Caracteres Sexuais , Colite Ulcerativa/genética , Doença de Crohn/genética , Proteínas de Ligação a DNA/genética , Feminino , Humanos , Masculino , Chaperonas Moleculares/genética , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...